Least squares problems with inequality constraints as quadratic constraints
نویسندگان
چکیده
منابع مشابه
Least squares problems with inequality constraints as quadratic constraints
Linear least squares problems with box constraints are commonly solved to find model parameters within bounds based on physical considerations. Common algorithms include Bounded Variable Least Squares (BVLS) and the Matlab function lsqlin. Here, we formulate the box constraints as quadratic constraints, and solve the corresponding unconstrained regularized least squares problem. Box constraints...
متن کاملLeast Squares Problems with Absolute Quadratic Constraints
This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein’s conic-fitting and Fitzgibbon’s direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem...
متن کاملCalibrating Least Squares Semidefinite Programming with Equality and Inequality Constraints
In this paper, we consider the least squares semidefinite programming with a large number of equality and inequality constraints. One difficulty in finding an efficient method for solving this problem is due to the presence of the inequality constraints. In this paper, we propose to overcome this difficulty by reformulating the problem as a system of semismooth equations with two level metric p...
متن کاملCalibrating Least Squares Covariance Matrix Problems with Equality and Inequality Constraints
In many applications in finance, insurance, and reinsurance, one seeks a solution of finding a covariance matrix satisfying a large number of given linear equality and inequality constraints in a way that it deviates the least from a given symmetric matrix. One difficulty in finding an efficient method for solving this problem is due to the presence of the inequality constraints. In this paper,...
متن کاملSparse Optimization with Least-Squares Constraints
The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a general class of sparsifying formulations. For sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.04.017